Exercise 9E

1 a The line l_{1} has equation
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 5\end{array}\right)$

Use column vector form for clarity. Put the two equations equal and compare x, y and z components. Then solve simultaneous equations.
and the line l_{1} has equation

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-3 \\
2
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

These lines meet when

$$
\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-1 \\
5
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-3 \\
2
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

$$
\text { i.e. } \begin{align*}
1+\lambda & =-1+\mu \tag{1}\\
3-\lambda & =-3+\mu \tag{2}\\
5 \lambda & =2+2 \mu \tag{3}
\end{align*}
$$

Add equations (1) and (2)

$$
\begin{aligned}
4 & =-4+2 \mu \\
\therefore 2 \mu & =8 \\
\text { i.e: } \mu & =4
\end{aligned}
$$

Substitute into equation (1)
$\therefore 1+\lambda=-1+4$
i.e: $\lambda=2$

Substitute $\lambda=2$ into equation for line l_{1}
$\therefore(x, y, z)=(3,1,10)$
Substitute $\mu=4$ into equation for line l_{2}
$\therefore(x, y, z)=(3,1,10)$
So the two lines do meet at the point $(3,1,10)$

1 b l_{1} has equation $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ and
l_{2} has equation $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}4 \\ 3 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$
These lines meet when $\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}4 \\ 3 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$

$$
\text { i.e. } \begin{align*}
3+\lambda & =4-\mu \tag{1}\\
2+\lambda & =3+\mu \tag{2}\\
1+2 \lambda & =-\mu \tag{3}
\end{align*}
$$

Add equations (1) and (2)

$$
\therefore 5+2 \lambda=7
$$

$$
\text { i.e. } \lambda=1
$$

Substitute into equation (1)

$$
\therefore 3+1=4-\mu
$$

i.e: $\mu=0$

Substitute $\lambda=1$ into equation for line l_{1} :
$\therefore(x, y, z)=(4,3,3)$
Substitute $\mu=0$ into line l_{2} :
$\therefore(x, y, z)=(4,3,0)$
This is a contradiction and the lines do not meet.
[N.B. $\lambda=1$ and $\mu=0$ do not satisfy equation (3) above.]

1 c l_{1} has equation $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$ and
l_{2} has equation $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ 2 \frac{1}{2} \\ 2 \frac{1}{2}\end{array}\right)+\mu\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$
l_{1} meets l_{2} when $\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)=\left(\begin{array}{c}1 \\ 2 \frac{1}{2} \\ 2 \frac{1}{2}\end{array}\right)+\mu\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$
i.e. $1+2 \lambda=1+\mu$

$$
\begin{equation*}
3+3 \lambda=2 \frac{1}{2}+\mu \tag{2}
\end{equation*}
$$

(1)

$$
\begin{equation*}
5+\lambda=2 \frac{1}{2}-2 \mu \tag{3}
\end{equation*}
$$

Substitute equation (1) from equation (2)
$\therefore 2+\lambda=1 \frac{1}{2}$
i.e. $\lambda=-\frac{1}{2}$

Substitute into equation (1)
$\therefore 1-1=1+\mu$
i.e. $\mu=-1$

Substitute $\lambda=-\frac{1}{2}$ into equation for line l_{1} :
$\therefore(x, y, z)=\left(0,1 \frac{1}{2}, 4 \frac{1}{2}\right)$
Substitute $\mu=-1$ into equation for line l_{2} :
$\therefore(x, y, z)=\left(0,1 \frac{1}{2}, 4 \frac{1}{2}\right)$
So the two lines do meet at the point $\left(0,1 \frac{1}{2}, 4 \frac{1}{2}\right)$
$\mathbf{2}\left(\begin{array}{c}-6+\lambda \\ -\lambda \\ 11+\lambda\end{array}\right)=\left(\begin{array}{c}2+2 \mu \\ -2+\mu \\ 9-3 \mu\end{array}\right)$
$\therefore\left(\begin{array}{c}\lambda-2 \mu \\ -\lambda-\mu \\ \lambda+3 \mu\end{array}\right)=\left(\begin{array}{c}8 \\ -2 \\ -2\end{array}\right)$
\mathbf{i} and \mathbf{j} components $\Rightarrow \lambda=4, \mu=-2$
Check \mathbf{k} component: $4+3(-2)=-2$
So the equations are consistent.
Therefore l_{1} and l_{2} meet.
Substituting the value of λ into l_{1},

$$
\left(\begin{array}{c}
-6 \\
0 \\
11
\end{array}\right)+4\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{l}
-2 \\
-4 \\
15
\end{array}\right)
$$

$3\left(\begin{array}{c}3+2 \lambda \\ 1+2 \lambda \\ -2+3 \lambda\end{array}\right)=\left(\begin{array}{c}5+2 \mu \\ 4+\mu \\ -\mu\end{array}\right)$
$\therefore\left(\begin{array}{c}2 \lambda-2 \mu \\ 2 \lambda-\mu \\ 3 \lambda+\mu\end{array}\right)=\left(\begin{array}{l}2 \\ 3 \\ 2\end{array}\right)$
\mathbf{i} and \mathbf{j} components $\Rightarrow \lambda=2, \mu=1$
Check \mathbf{k} component: $3(2)+1=7 \neq 2$
So the equations are inconsistent. Therefore l_{1} and l_{2} do not intersect.

4 a The line meets the plane when

$$
\begin{aligned}
{[(1-2 \lambda) \mathbf{i}+(1+\lambda) \mathbf{j}+(1-4 \lambda) \mathbf{k}] \cdot(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}) } & =16 \\
\text { i.e. } 3(1-2 \lambda)-4(1+\lambda)+2(1-4 \lambda) & =16 \\
\therefore 3-6 \lambda-4-4 \lambda+2-8 \lambda & =16 \\
\therefore 1-18 \lambda & =16 \\
\text { i.e. }-18 \lambda & =15 \\
\therefore \lambda & =-\frac{15}{18} \\
\text { i.e. } \lambda & =\frac{-5}{6}
\end{aligned} \quad \begin{aligned}
& \text { Assume that the line meets the plane } \\
& \text { and perform the scalar product. Solve } \\
& \text { the resulting equation to find the value } \\
& \text { of } \lambda . \text { If there is no value for } \lambda, \text { then } \\
& \text { the line does not meet the plane. }
\end{aligned}
$$

Substitute into the equation of the line

$$
\begin{aligned}
\therefore(x, y, z) & =\left(1+\frac{10}{6}, 1-\frac{5}{6}, 1+\frac{20}{6}\right) \\
& =\left(2 \frac{2}{3}, \frac{1}{6}, 4 \frac{1}{3}\right)
\end{aligned}
$$

b The line meets the plane when

$$
\begin{aligned}
{[\mathbf{i}+(1+2 \lambda) \mathbf{j}+(1-2 \lambda) \mathbf{k}] \cdot(3 \mathbf{i}-\mathbf{j}-6 \mathbf{k}) } & =1 \\
\text { i.e. } 3-(1+2 \lambda)-6(1-2 \lambda) & =1 \\
\text { i.e. } 3-1-2 \lambda-6+12 \lambda & =1 \\
\therefore 10 \lambda-4 & =1 \\
\therefore \lambda & =\frac{1}{2}
\end{aligned}
$$

Substitute into the equation of the line

$$
\begin{aligned}
\therefore(x, y, z) & =(1,1+1,1-1) \\
& =(1,2,0)
\end{aligned}
$$

5 a If l meets the plane, there exists a λ such that

$$
\begin{aligned}
& \left(\left(\begin{array}{c}
2 \\
3 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right) \cdot\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)=1 \\
& \Rightarrow\left(\begin{array}{c}
2 \\
3 \\
-2
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)=1 \\
& \Rightarrow 2+3+4+\lambda(1+1-2)=1 \\
& \Rightarrow 9=1 \text {. This is a contradiction. }
\end{aligned}
$$

Therefore the line does not intersect the plane.
b The line is parallel to the plane and not contained within the plane.

6 a Since the lines are perpendicular, the scalar product of their direction vectors is 0 .
$\therefore\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ p \\ p\end{array}\right)=-3-p+2 p=0 \Rightarrow p=3$
$\mathbf{b}\left(\begin{array}{c}5+3 \lambda \\ 4-\lambda \\ -1+2 \lambda\end{array}\right)=\left(\begin{array}{c}-\mu \\ 11+3 \mu \\ 3+3 \mu\end{array}\right)$
$\therefore\left(\begin{array}{c}3 \lambda+\mu \\ -\lambda-3 \mu \\ 2 \lambda-3 \mu\end{array}\right)=\left(\begin{array}{c}-5 \\ 7 \\ 4\end{array}\right)$
\mathbf{i} and \mathbf{j} components $\Rightarrow \lambda=-1, \mu=-2$
Check \mathbf{k} component: $2(-1)-3(-2)=4$
So the equations are consistent
Therefore the lines intersect
Subsituting $\lambda=-1$ into the first line, the point of intersection is

$$
\left(\begin{array}{c}
5 \\
4 \\
-1
\end{array}\right)-\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)=\left(\begin{array}{c}
2 \\
5 \\
-3
\end{array}\right) \text { so }(2,5,-3)
$$

$7 \mathbf{a}\left(\begin{array}{c}5-\lambda \\ 2+\lambda \\ 1+2 \lambda\end{array}\right)=\left(\begin{array}{c}4+\mu \\ 1 \\ 1-\mu\end{array}\right)$
$\therefore\left(\begin{array}{c}-\lambda-\mu \\ \lambda \\ 2 \lambda+\mu\end{array}\right)=\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$
\mathbf{i} and \mathbf{j} components $\Rightarrow \lambda=-1, \mu=2$
Substituting $\lambda=-1$ into l_{1},
$\left(\begin{array}{l}5 \\ 2 \\ 1\end{array}\right)-\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{c}6 \\ 1 \\ -1\end{array}\right)$
b Let $\mathbf{a}=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right), \mathbf{b}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$
$\mathbf{a} \cdot \mathbf{b}=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)=-1-2=-3$
$|\mathbf{a}|=\sqrt{(-1)^{2}+1^{2}+2^{2}}=\sqrt{6}$
$|\mathbf{b}|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}$
$\therefore \cos \theta=\left|\frac{-3}{\sqrt{6} \sqrt{2}}\right|=\frac{3}{\sqrt{12}}=\frac{3}{2 \sqrt{3}}=\frac{\sqrt{3}}{2}$
$\mathbf{8}\left(\begin{array}{c}-3 \lambda \\ -1+5 \lambda \\ 2+4 \lambda\end{array}\right)=\left(\begin{array}{c}\mu \\ 1-2 \mu \\ -5+2 \mu\end{array}\right)$
$-3 \lambda=\mu$
$-1+5 \lambda=1-2 \mu$
(2) $+2 \times$ (1) gives $-1+5 \lambda-6 \lambda=1-2 \mu+2 \mu$
$-1-\lambda=1$
So $\lambda=-2$
Substituting in (1) gives $\mu=6$
Check for consistency: $2+4 \lambda=-6$ and $-5+2 \mu=7$
$2+4 \lambda \neq-5+2 \mu$, so equations are not consistent.
The direction of l_{1} is $\left(\begin{array}{c}-3 \\ 5 \\ 4\end{array}\right)$ and the direction of l_{2} is $\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$
The direction vectors are not scalar multiples of each other, so l_{1} and l_{2} are not parallel.
Hence l_{1} and l_{2} are skew.

9 a Since l_{1} and l_{2} are perpendicular, the scalar product of their direction vectors is 0

$$
\therefore\left(\begin{array}{c}
-1 \\
3 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
q \\
2 \\
-1
\end{array}\right)=-q+6-2=0 \Rightarrow q=4
$$

b Since l_{1} and l_{2} intersect, there exist λ
and μ such that

$$
\begin{aligned}
& \left(\begin{array}{c}
8-\lambda \\
2+3 \lambda \\
-12+2 \lambda
\end{array}\right)=\left(\begin{array}{c}
-4+4 \mu \\
10+2 \mu \\
p-\mu
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{c}
-\lambda-4 \mu \\
3 \lambda-2 \mu \\
2 \lambda+\mu
\end{array}\right)=\left(\begin{array}{c}
-12 \\
8 \\
p+12
\end{array}\right)
\end{aligned}
$$

\mathbf{i} and \mathbf{j} components $\Rightarrow \lambda=4, \mu=2$
\mathbf{k} component: $2(4)+2=p+12 \Rightarrow p=-2$
c Substituting $\lambda=4$ into l_{1},
$\left(\begin{array}{c}8 \\ 2 \\ -12\end{array}\right)+4\left(\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right)=\left(\begin{array}{c}4 \\ 14 \\ -4\end{array}\right)$
So (4,14, -4)

9 d Let the intersection point be P.
$\therefore \overrightarrow{O B}=\overrightarrow{O P}-\overrightarrow{P A}$
$\Rightarrow \overrightarrow{O B}=\left(\begin{array}{c}4 \\ 14 \\ -4\end{array}\right)-\left(\begin{array}{c}5 \\ -15 \\ -10\end{array}\right)=\left(\begin{array}{c}-1 \\ 29 \\ 6\end{array}\right)$
10 a $k=\left(\begin{array}{c}6 \\ -2 \\ 4\end{array}\right) \cdot\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)=12-6-4=2$
b Expanding the scalar product, $2 x+3 y-z=2$

10 c Find an equation for l : since it passes through $P(6,4,8)$ and is normal to the plane, an equation is
$\mathbf{r}=\left(\begin{array}{l}6 \\ 4 \\ 8\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$
\therefore At N,
$\left(\left(\begin{array}{l}6 \\ 4 \\ 8\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)\right) \cdot\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)=2$
$\Rightarrow\left(\begin{array}{l}6 \\ 4 \\ 8\end{array}\right) \cdot\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)=2$
$\Rightarrow 12+12-8+\lambda(4+9+1)=2$
$\Rightarrow \lambda=-1$
Substituting this into l,

$$
\begin{aligned}
& \left(\begin{array}{l}
6 \\
4 \\
8
\end{array}\right)-\left(\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right)=\left(\begin{array}{l}
4 \\
1 \\
9
\end{array}\right) \\
& \therefore N(4,1,9)
\end{aligned}
$$

11 a $\frac{x-3}{5}=\frac{y+2}{3}=\frac{4-z}{1}=\lambda$
$x=3+5 \lambda, y=-2+3 \lambda, z=4-\lambda$
$4(3+5 \lambda)+3(-2+3 \lambda)-2(4-\lambda)=-10$
$\Rightarrow \lambda=-\frac{8}{31}$
$\therefore x=\frac{53}{31}, y=-\frac{86}{31}, z=\frac{132}{31}$
$\therefore P\left(\frac{53}{31},-\frac{86}{31}, \frac{132}{31}\right)$

$$
\begin{aligned}
& 11 \mathbf{b} \quad \mathbf{b}=\left(\begin{array}{c}
5 \\
3 \\
-1
\end{array}\right), \mathbf{n}=\left(\begin{array}{c}
4 \\
3 \\
-2
\end{array}\right) \\
& \mathbf{b} \cdot \mathbf{n}=\left(\begin{array}{c}
5 \\
3 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
4 \\
3 \\
-2
\end{array}\right)=20+9+2=31 \\
&|\mathbf{b}|=\sqrt{5^{2}+3^{2}+(-1)^{2}}=\sqrt{35} \\
&|\mathbf{n}|=\sqrt{4^{2}+3^{2}+(-2)^{2}}=\sqrt{29} \\
& \therefore \sin \theta=\frac{31}{\sqrt{35} \sqrt{29}} \\
& \Rightarrow \theta=76.7^{\circ} \quad(1 \text { d.p. })
\end{aligned}
$$

